

Additive Manufacturing Vita 48.4 and 48.8

Adam Butler - Director, Mission Assurance

Additive Manufacturing Overview

- How it works
- Materials and their properties
- Advantages
- Combining Additive with Subtractive
- Applying the technology to LFT and AFT
- Optimization of design for AM over Traditional methods
 - MFAM Modified for Additive Manufacturing
 - SFAM Simulation for Additive Manufacturing
 - DFAM Design for Additive Manufacturing

What is Vita 48 - LFT & AFT?

- Enhanced Ruggedized Design Implementation
- How to apply advanced cooling techniques to traditional
 VME or VPX Cards

Vita 48.8 – Air Flow Through (AFT)

Core Technologies: How to melt the metal

- Most widespread technologies use powdered metals to make parts layer-by-layer
 - 20-70 micron diameter powders are spread in a thin layer.
 - Laser, or an electron beam, fuses/melts the powder only where the part will be.
 - The part is subsequently lowered, and a new layer of powder is delivered.
 - Once the part is complete it is still encased in powder.
 - Part is removed and powder is removed from all channels.
 - There are multitudes of variables that can be controlled for growth and feature optimization.

Advantages of metal additive manufacturing (AM)

- Geometric Freedom
 - Design for the solution not how it can be made
- Significantly complex shapes are possible
- Not constrained by tool paths
- Hidden or internal features
- Tunable design capabilities
- Reduce costs on non-revenue generating parts
- Can be fully automated
- Large lead time and cost advantage over brazing
- Prototype faster without tooling investment
- Digital inventory and Legacy Parts
- Weight Savings
- Power is tunable to desired properties
- Simplified Assemblies
 - Complex assemblies that can be printed as one part
 - Reduces assembly time, part count and manufacturing steps

Materials Comparison – Possible Customization

- Typically trade off between strength and thermal conductivity
- Print speed is key factor in cost

(All tensile tests were performed at Westmoreland Mechanical Testing & Research)

Process and Materials

- As-printed strength is high and density should be nearly 99%+, but typically thermal conductivity is lower
- Post-processing heat treatment reduces stress an increase thermal performance

	Condition	UTS (Mpa)	Yield (Mpa)	Elongation	Thermal Conductivity (W/m-K)
	As Built	450	280	4%-8%	160
AlSi10Mg (Printed)	Stress Relieved	270	160	8%-14%	173
	T6	320	256	8%	173
6061RAM2	As Built	250	226	1%-4%	
(Printed)	T6	290	250	12%	~120
6061 (Billet)	Т6	310	276	12-17%	167
6101 (Billet)	Т6	221	193	19%	218
6063 (Billet)	T6	241	214	12%	200

Combining Additive with Subtractive – Vita 48.4 – 48.8

 Folded fin, internal liquid channels and custom chassis all possible

Applying the Technology to VITA 48.4 LFT and 48.8 AFT

- LFT Chassis
 - High mix Low Volume is ideal for AM
 - Multi layered cooling channels possible inside chassis wall

Optimization of design over traditional methods

- MFAM Modifying for Additive Manufacturing
- SFAM Simulation for Additive Manufacturing
- DFAM Design for Additive Manufacturing
 - CFD, Heat Transfer Analysis, FEA, Fatigue Analysis, AM Simulation
- Processing/Printing
 - Slow printing during channel printing and at start/stop of surfaces
 - Fast printing bulk structures
- Internal Structures
 - In liquid path for increased thermal performance
 - Chemical honing
 - Power Removal

Thank you

